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Resistive states of hard superconductors have been investigated by tube magnetization and resistance 
measurements. The flux-creep theory of Anderson is very effective in accounting for the experimental obser
vations reported herein. Resistive phenomena were observed in the presence of transport current density / 
and magnetic field B perpendicular to / . It is found that the whole spectrum of resistive states can be repre
sented in terms of a single parameter a. = / ( £ + B 0 ) , where B0 is a constant of the material. This parameter 
represents essentially the Lorentz force or the magnetic pressure gradient in the material. While a wide range 
of a values is possible, under given experimental conditions superconductivity usually can not be maintained 
above a critical value. In tube magnetization, the critical value ac is determined primarily by the rate with 
which the persistent current / decays. If a is raised beyond ac, J decays rapidly and a quickly falls near to ac. 
a continues to decrease slowly, but proportional to the logarithm of time as predicted by the theory. The 
observed temperature dependence of ac is accounted for by the theory. Discrete, stochastic changes in field 
anticipated from the motion of flux bundles have been detected through pickup coils placed in close prox
imity to the superconducting tube. In resistance measurements, voltages appearing across 3Nb-Zr wire 
samples were measured by supplying / externally in the presence of a perpendicular field H. The voltage 
observed is interpreted as a manifestation of an uncompensated emf arising from flux creep. At a given tem
perature, voltage readings obtained over a wide range of / and H are found to be a function of a — J{H-\-B^) 
only. V(a,T) follows qualitatively a form expected from the theory. In resistance measurements, the critical 
value ap is determined by the power dissipation in the material. If a is raised beyond ap, thermal conduction 
lags the power dissipation and the sample undergoes a catastrophic transition to the normal state. 

I. INTRODUCTION 

RECENTLY, we have reported1-2 that in bulk hard 
superconductors the critical current density / in 

the presence of transverse magnetic field B is limited 
by the Lorentz force parameter a^JB<ac. ac is a 
structure-sensitive constant of the material and its de
pendence on temperature is nearly linear as far down 
as 0ATC) where none of the bulk superconducting 
properties is expected to vary noticeably. To account 
for these observations, Anderson3 introduced a mecha
nism of flux creep arising from thermal activation. In 
consequence, his theory predicts the decay of persistent 
currents proportional to the logarithm of time. This 
logarithmic decay has been observed1 from one to about 
104 sec. In this article we report additional experimental 
facts that can be explained most naturally by the flux-
creep model. In particular, it will be shown that the 
broad resistive transitions commonly observed in hard 
superconductors can be represented in terms of the 
Lorentz force parameter a. 

Insofar as the bulk electromagnetic properties are 
concerned, superconductors may be classified into three 
groups. The phenomenological theory of London4 is 
very effective in accounting for the properties of ideal 
soft superconductors, or SI. The possible existence of 
another group of superconductors SII has been indi
cated by the theory of Ginzburg and Landau,5 which 

1 Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 
Letters 9, 306 (1962). 

2 Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 
129, 528 (1963). 

3 P. W. Anderson, Phys. Rev. Letters 9, 309 (1962). 
4 F. London, Super fluids (Dover Publications, Inc., New York, 

1960), Vol. 1. 
5 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 

20, 1064 (1950). 

has been shown to follow from the microscopic theory 
of BCS6 by Gor'kov.7 According to the theoretical work 
by Abrikosov,8 and later by Goodman,9 a bulk sample 
of homogeneous, strain-free 511 material enters into a 
mixed state in a region of magnetic fields Hci<Hc<HC2, 
below and above the thermodynamic critical field Hc. 
Essential to the occurrence of the mixed state is a small 
coherence distance in the superconducting state, since 
this leads to a negative interphase surface energy and 
makes the mixed state thermodynamically stable. Thus, 
the magnetic behavior in the mixed state is expected to 
be reversible and independent of the sample size. Many 
recent experiments10 support the existence of a mixed 
state when the sample is made homogeneous and strain-
free. -511 materials in the mixed state allow the flow of 
body currents because of the field penetration in the 
form of flux filaments, but they are not expected to 
support large transport current densities. In the pres
ence of transport currents transverse to the magnetic 
field, the Lorentz force will set either the flux filaments 
or the superconducting regions into a continual lateral 
motion,11 thereby developing an effective resistance in 

6 J. Bardeen, L. N. Cooper, and T. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). 

7 L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959); 
37, 833 (1959) [translations: Soviet Phys.—TETP 9, 1364 
(1959); 10,593 (I960)]. 

8 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957) 
[translation: Soviet Phys.—JETP 5, 1174 (1957)]. 

9 B. B. Goodman, Phys. Rev. Letters 6, 597 (1961). 
10 Abrikosov mixed-state behavior has been observed in Ta-Nb 

by A. Calverley and A. C. Rose-Innes, Proc. Roy. Soc. (London) 
A255, 267 (1960); in Nb by T. F. Stromberg and C. A. Swenson, 
Phys. Rev. Letters 9, 370 (1962); in In-Bi by T. Kinsel, E. A. 
Lynton, and B. Serin, Phys. Letters 3, 30 (1962); and in Mo-Re 
by J. K. Hulm, 8th Conference on Magnetism and Magnetic 
Materials, Pittsburgh, Pennsylvania, (unpublished). 

11 J. C. Gorter, Phys. Letters 1, 69 (1962); 2, 26 (1962). 
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the material. Thus, in the high-field superconducting 
materials capable of supporting large transport current 
densities, some mechanism must be present to provide 
a rigidity against the Lorentz force. These materials are 
basically of the 511 type, but contain a large amount of 
structural irregularities such as impurities, strains, dis
locations, or other physical defects. In this respect, we 
may call these materials the third group, or 5TIL If 
structural irregularities are introduced in SI materials, 
in many respects they also behave like 6III. 

In Anderson's flux-creep theory,3 the moving entities 
are assumed to be the bundles of magnetic flux which 
may contain single or many quantized flux filaments. 
Although the internal structure of a flux bundle is 
visualized as similar to the Abrikosov structure,8 the 
theory does not take this into account explicitly. Struc
tural irregularities present in an 5111 material are 
assumed to pin down flux bundles and act as free-energy 
barriers. A flux bundle so pinned, however, can hop the 
barrier by thermal activation aided by the Lorentz 
force. This concept of activated motion of flux struc
tures and a simple theory resulting from this concept 
are substantiated by the experimental facts reported 
below. 

TUBE 26A (Nb POWDER S I N T E R E D ) 
T C - 7 . 5 ° K 

H' 
4 

(kG) 

FIG. 2. \/M versus H* plots for a Nb powder sintered tube. 
H'(H) curves for this tube at 4.2 and 3.3°K are given in Fig. 1 
of Ref. 1. 
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II. TUBE MAGNETIZATION AND FLUX CREEP 

Inasmuch as Anderson's flux-creep theory was de
veloped in parallel with our tube magnetization experi
ments, we will first summarize the analytical approach 
used in tube experiments and its connections to the 
flux-creep theory. If the external field H, applied parallel 
to the axis of a hard superconducting tube, is varied, the 
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FIG. 1. Tube magnetization curve of a 3Nb-Zr tube. ac=5.0X 106 

emu (G-abamp/cm2) and £ 0 = 1.1 kG are obtained from this 
magnetization curve. P is the point at which a 3-h decay run was 
made with a YIG probe. The insert shows the tube geometry 
(a=0.33 cm, w=0.153 cm, 5=r4.45 cm) and the pickup coil 
arrangement used for pulse detection. Pulses observed in Pi and 
P2 are shown in Fig. 5. 
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axial field Hf inside the tube follows along a curve12 such 
as shown in Fig. 1. When the values of H and Hr lie on 
this curve, the sample is said to be in a critical state, 
wherein every macroscopic region of the sample is 
assumed to carry the critical current density J(B) de
termined only by the local magnetic field B at that 
region. Once J(B) is specified, Hf in a critical state is 
determined from the relation 

Hf=H+4: 
/ . W 

Jo 

JlB{r)-]dr, (1) 

where r is a radical variable measured inward from the 
outer surface of the tube. Elimination of r leads to an 
integral relation 

rH*+W fig 
4TTW= / , (2) 

J H*-\M J(B) 

where # * = § ( # ' + # ) is the mean field in the sample 
wall, and M—H'—H is the field produced by the in
duced supercurrent. The average current density in the 
wall is then given by M/4nw. Since H*, M, and w are 
available from experiments, (2) enables us to deduce 
J(B) empirically. 

For many SIII materials, the critical-state curve 
Hr(H) consists of two hyperbolas and one circle. A more 
sensitive way of representing such systematics is to 
plot the data points in the 1/M—H* plane. A typical 

12 If H is changed too fast, a flux jump occurs and W falls 
quickly to H. The flux jump is more frequent in the low-field-
high-current region and is believed to be caused by locally exces
sive values of a. 



2488 K I M , H E M P S T E A D , A N D S T R N A D 

(3) 

(b) 

(c) 

Cd) 

(e) 

A7VWV 
AVE. BARRIER HEIGHT 

pHCB2d3 

F 0 = -
877 

HOP RATE 

r-(-^) AVE. BARRIER HEIGHT 

Fo-J0Bd2 

FIG. 3. A schematic model of flux creep. 

plot of 1/M versus H* obtained with a Nb powder 
sintered tube is shown in Fig. 2. Representing the 
straight line by 

4*wae/M=B0+H*, (3) 

two constants ac and B0 can be obtained from the slope 
and the intercept. The critical-state curve Hf(H) associ
ated with this straight line is given by two hyperbolas 

(H'+Boy-iH+Boy^^Sirwao, (4) 

and a circle 

{Hf+B,y+{H-B,y=2{±>KWac+B£). (5) 

I t is now readily seen that (3) follows from (2) for a 
critical current density relation 

a=J(B+B0)=ac. 

Note that for B^>B0, the parameter 

a~JB=\(H'*-H2)/$nw\ 

(6) 

(7) 

represents the Lorentz force or the magnetic pressure 
gradient in the sample. Thus, the supercurrent density 
in an 5III material cannot be raised beyond the point 
where the Lorentz force parameter a exceeds a certain 
critical value ac. 

The values of ac are generally larger for 5111 materials 
having higher transition temperature Tc. For a material 
of given chemical composition, however, ac is strongly 
influenced by the amount of structural irregularities in 

the material, although the presence of such irregularities 
does not affect Tc. Also, ac depends strongly on tem
perature, even down to a low-temperature range where 
none of the bulk superconducting properties is expected 
to vary noticeably. This is apparent from Fig. 2. As T is 
lowered, ac (the inverse of slope) increases linearly in T. 
This trend is common to 5TIJ materials investigated in 
our tube experiments (Nb powder sintered material, 
Nb-Zr alloys, NbsSn intermetallic compounds), and an 
empirical relation, 

(F0—qac)/kT= const, (8) 

has been established. The significance of Fo and q will 
become apparent from the flux-creep theory. 

Anderson3 inferred a thermally activated process from 
the empirical relation (8), and developed a simple theory 
which is quite effective in accounting for the transport 
current properties of 6TII materials. The working model 
behind this theory is shown schematically in Fig. 3. 
(a) represents the periodic structure of flux lines in the 
Abrikosov mixed state. When the separation between 
flux lines becomes of the order of London penetration 
depth Az/^5X 10~6 cm, flux lines will be bound together 
to some extent by the interaction of their fields and 
wave functions. Physical irregularities present in an 
6*111 material may also aid the formation of such flux 
"bundles" as in (b). (c) shows the spatial variation in 
free energy for such a structure. Since the physical 
irregularities tend to pin down the flux bundles, free-
energy maxima centered around these irregularities will 
become free-energy minima for the motion of flux 
bundles (d). The average energy barrier experienced by 
the bundles is then expressed by 

Fo=pHeB
2<P/&ir, (9) 

where HCB is the bulk critical field and p is a parameter 
representing the pinning strength. In the presence of 
transport current density / (transverse to B), the 
Lorentz force JB on flux bundles will result in a tilting 
of the barrier structure as in (e). This, in effect, reduces 
the barrier height to 

F0-J<pBd2 = Fo-adA, (10) 

where (pB=Bd2 is the total flux in the bundle. The inter-
bundle spacing, as well as the length of the bundle which 
can move independently, are assumed to be of the order 
of d, For other possibilities, the d4 factor will contain 
additional parameters. The approximation a^JB holds 
only in the high-field limit where B~S>B0. Thermal acti
vation now enables the bundle to hop a barrier and go 
down the hill. This rate is given by 

Hop rate=2?0 exp[— (F0—qa)/kT~\, (11) 

where Ro is an appropriate frequency factor. We have 
replaced the d4 factor by q, anticipating various modifi
cations to the theory. 
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In the tube experiment, if H is held at a constant 
value greater than H', the flux bundles creep into the 
tube and the difference \M\=H—H' will become 
smaller in time, that is, the persistent currents decay. 
This consideration leads to an equation of creep rate 

where c is a parameter giving the number of effective 
barriers that are encountered by a bundle in crossing 
the tube wall. According to this theory, the critical 
state as observed in tube experiments represents only a 
quasiequilibrium state at which the rate falls below a 
practically observable limit. Under this condition, the 
exponent in (12) will become a constant and a therein 
will be identified experimentally as ac, leading to the 
empirical relation (8). The observed linearity of ac with 
T follows simply from the fact that F0 is insensitive to 
temperature at low temperatures. 

Since the creep in (12) continues at any values of / 
and B, the value of a in the sample will be continually 
decreasing. The theory is specific on this time behavior 
of a and predicts 

In terms of the observable quantity H', (13) gives 

4:TTW kT 
8H'= Int. (14) 

H'+Bo q 

In other words, the internal field H' will change loga
rithmically in time. Experimental verifications of this 
logarithmic behavior have been reported earlier.1 In 
recent runs, we have been using a sensitive yttrium 
iron garnet (YIG) electron spin resonance probe to 
measure H' with a precision of one part in 105. All runs 
made with this YIG probe verify the logarithmic decay 
to a high degree of accuracy. For example, a decay run 
made at P of Fig. 1, which lasted for 104 sec, gave 
d#yd( ln0 = (5.01dz0.02) G per decade. The depend
ence of decay rates on field and temperature are cur
rently being investigated with the YIG probe. 

So far, we have described a particular group of 5111 
materials for which the Lorentz force relation (6) holds 
almost up to the upper critical field. For classification 
purposes, we may call them ideal S i l l ' s . .Two samples 
shown in Fig. 4 do not behave in this way. In the Nb 
metal tube, if the lower shielding portion of Hf(H) is 
fitted to (6), the critical current density at high fields 
is much lower than that expected from (6). In the V 
metal tube, the situation is reversed in that the critical 
current density at low fields is too small. In spite of such 
deviations, however, we do observe logarithmic changes 
in Hf for both Nb and V tubes. The logarithmic decay 
has also been observed near the upper critical field of 
ideal SI I I samples, where H'(H) no longer follows from 
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H(kG) 

FIG. 4. Tube magnetization curves for (a) a Nb metal tube, 
(b) a V metal tube. The dashed line in (a) is obtained by fitting 
the lower portion of the observed curve to expression (6) of the text. 

(6). DeFeo and Sacerdoti13 observed the trapped flux in 
a Pb ring to decay under the bombardment of a parti
cles. Replotting their data, we find this decay is also 
logarithmic up to /~1 .5X10 6 sec, the period of their 
observations. Thus, the logarithmic decay process ap
pears to be quite general in a certain domain of 
superconductivity. 

III. MOTION OF FLUX BUNDLES 

According to the flux-creep model, the motion of flux 
bundles is expected to be discrete and stochastic. 
Anticipating that this behavior would be reflected in the 
change of magnetic fields, we placed pickup coils inside 
(Pi) and outside (P2) the 3Nb-Zr tube shown in Fig. 1. 
Signals in the pickup coils were displayed on an oscillo
scope via a low noise amplifier having a voltage gain of 
about 900. Typical pulse signals observed in Px at the 
shielding portion of Hf(H) are shown in Fig. 5a. Signals 

13 P. DeFeo and G. Sacerdoti, Phys. Letters 2, 264 (1962). 
The fact that the trapped flux decay observed by these authors 
follows a logarithmic decay law was pointed out by P. W. Anderson. 

d 2dRoH* 
— ( # - # ' ) = exp: 
dt ca I 

•(Fo-qa)-\ 

kT J 
(12) 

8a= c o n s t - (kT/q) Int. (13) 
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(a) 

FIG. 5. Pulses observed in pickup coils of Fig. 1: (a) pulses ob
served in Pi at the shielding region (20 /zsec/div, 5/xV/div); (b) 
pulses observed in P 2 at the circular region (200 /xsec/div, 2 
mV/div). 

vary in amplitude, but they all have about the same 
rise time. Calibrations of the pickup coil and amplifier 
system indicate that such a signal results from a voltage 
pulse lasting for about 10/isec or less, and the signal 
amplitude is proportional to the voltage impulse f Vdt. 
The smallest signals discernable from noise are esti
mated to contain 20 to 50 flux quanta. 

In the shielding region of H (H), where Hf<H and 
flux creeps inward, we observe unidirectional pulses in 
P i but not P2. In the trapping portion where flux creep 
outward, we observe similar pulses in P 2 but not P i . I t 
appears that flux leaves the tube in the form of bundles, 
but flux replenishment from the other side of the tube 
need not be in the form of bundles, or the bundles are 
too small to be detected. Pulses are frequent near the 
critical state where flux creeps faster. If H is held at a 
constant value on H'(H), the number of pulses decreases 
in time in a manner consistent with the logarithmic 
decay in Hf. In the circular region, pulses in P2 are 
dominated by the type shown in Fig. 5b. Such pulses 
are also observed occasionally in P i . These large, wide 
pulses, or a succession of them, may be due to an 
avalanche motion of flux bundles or/and some sort of 
domain motion.14 Pulses qualitatively similar to those 
shown in Fig. 5a, but much smaller in amplitude, have 
also been observed in a Nb3Sn tube. Although a quanti-

14 Fluctuation of the resistance in SIII materials, probably due 
to domain motions, was reported by B. Lalevic, Phys. Rev. 128, 
1070 (1962). Earlier work on domain motions are quoted in this 
article. 

tative interpretation requires further work, the basic 
concept of activated motion of flux structures seems 
very real in these pulse observations. 

IV. RESISTANCE DUE TO FLUX CREEP 

Energy dissipation associated with flux creep is quite 
different from ordinary ohmic dissipation. Nevertheless, 
we may associate an equivalent electrical resistance with 
the flux creep by a simple argument. Since H—H'= 
4t7rl/b (see Fig. 1), the change in Hf due to flux creep is 
interpreted as a decay of persistent current / in the tube 
wall, with a rate 

dl/dt= (b/47r)(d/dt)(H-H/). (15) 

For the closed system, we may attribute this change in 
/ to an equivalent R by the circuit equation 

L(dI/dt)+RI=0. (16) 

Taking the case w<^a<£b, which leads to P~47r2a2/Z> 
and Rc^p2ira/(bw), we derive an expression for the 
resistivity, 

1 iW 
I = 2-KCLW I p=2iraw 

\dl 

I dt H-W dt 
(17) 

At P of Fig. 1, using the above expression, we estimate 
p = 3X10~~13 fi-cm at the very beginning of the decay 
run. As the current decays due to flux creep, p falls as 
1/L After 104 sec, p then falls to 3X10~17 ft-cm. In spite 
of this large change in p, however, a decreases by only 
1% during this period. 

In our tube experiments, the test of logarithmic decay 
is confined to a very small range of a near ac. For a 
substantially smaller than ac, the experiment is difficult 
because of the enormously long time scale involved.15 

For a > a c , on the other hand, the decay is too fast to be 
measured conveniently. We, therefore, proceeded to test 
logarithmic decay over a wide range of a values. This 
amounted to measuring the resistance of a sample by 
supplying a constant current externally in the presence 
of a transverse field H. Under this condition, flux creep 
generates an uncompensated emf and a voltage will 
appear along the direction of current flow. We expect 
this voltage to be dominated by the exponential term 
in (11), i.e., 

F = = / e x p [ - ( P 0 - ^ ) A r ] . (18) 

For a sample of small cross-sectional area, B appearing 
in a [see (6)] may be approximated by H. The factor / 
depends on the sample geometry and contains some of 
the structural constants defined by Anderson.3 I t may 
also depend on J and H. 

To check expression (18), we measured the voltage 
15 J. File and R. G. Mills, Phys. Rev. Letters 10, 93 (1963), 

observed a persistent current decay in a closed Nb-Zr coil at a 
level of p^SXlO - 2 2 fl-cm. We feel their observation is consistent 
with the flux-creep model, although it may be due to some other 
effects. 



F L U X C R E E P I N H A R D S U P E R C O N D U C T O R S 2491 

across a 3Nb-Zr wire16 (250 cm long, and 0.0076 cm in 
diameter), either varying / at constant H or varying H 
at constant / . For a given set of / and H values, these 
two methods yielded the same voltage reading within 
the experimental errors. In Fig. 6 are shown V's as a 
function of H for different sets of constant J% all taken 
at 4.2°K. It is evident that V depends strongly on / and 
H. If we assign a resistivity to the material by the rela
tion p= V/(U), where / is the length of the wire, we 
obtain values as indicated in the figure.17 As / is de
creased, the transition becomes broader. In other words, 
the resistive state appears over a wider range of ZZ.These 

I IN AMP J IN 103 ABAMP/CM2 

(a). 
(b) 
(c) 
(d) 
(e) 

5.01 

3.98 
2.98 
1.98 
1.49 

11.0 

8.75 
6.55 
4 .35 
3 .28 

FIG. 6. Voltages observed across a 3Nb-Zr wire (250 cm long). 
Voltage readings were taken with a digital voltmeter (0.5-juV 
sensitivity) as a function of H at various current settings. Vertical 
arrows indicate catastrophic transitions to the normal state. All 
these transitions took place at P = VI = 1.1 mW. p values shown 
are calculated from P = V/(U), where 1 = 250 cm. p (300°K) 
= 35 jnQ-cm and p (77 °K) =26/zfi-cm were obtained for this sample. 

characteristics have been commonly observed in earlier 
work, but no convincing theory has been put forward to 
explain this behavior. 

In order to compare our data with (18), we carried 
out the following analysis. 

16 Commercially supplied 3Nb-Zr wire was annealed for one 
hour at 1125°C. Two ends of a wire sample were clamped into 
large copper blocks which served as lead-in current terminals. 
Voltage leads were attached to the sample about 3 cm away from 
the copper blocks. 

17 The resistivity obtained in this way is a gross underestimate. 
See Sec. V. 

3 « 

£ 6 
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12 13 14 15 16 
J H IN 106 EMU 

18 19 

FIG. 7. / versus JH plots for constants F's. The data points 
obtained from Fig. 6 are shown by the dots. With the same sample, 
voltage readings were also taken by varying / at constant H's, 
These data are shown by the circles. The slope of V —100 juV line 
yields .Bo = 0.5 kG. 

A. Determination of B0 

From (18) we obtain 

Fo q q 
lnF=ln/ H JH-\ B<J. 

kT kT kT 
(18.1) 

If / and F0 are insensitive to / and H, sets of / and H 
values yielding a constant V should fall on^a straight 
line in the J-JH plane, with a slope of — 1/B0. Such a 
plot obtained from the data of Fig. 6 is shown in Fig. 7. 
The data obtained by varying / at constant H are also 

V'(MV) 

14 16 18 
JH OR a IN 106 EMU 

FIG. 8. V as a function of a. Curves of Fig. 6 are first plotted 
against JH, then against a=J(H+B0) with J 5 0 = 0 . 5 kG as ob
tained in^Fig. 7. In the V—a plot, all curves [(a) to (e)] of Fig. 6 
coalesce into a single curve (f), within the limits shown by the 
horizontal flags. Open circles indicate normal transitions occurring 
at various current settings. 



2492 K I M , H E M P S T E A D , A N D S T R N A D 

20. 25 30 35 40 45 50 55 
a IN 106 EMU 

FIG. 9. F(a)'s at various T's. At each temperature, B0 was 
obtained from a plot similar to Fig. 7. Using B0 so obtained, 
V(H) curves at different J's have been reduced into a single curve 
V(a). Below T\, the dashed portions of V(aYs indicate where the 
sample temperature rose above the bath temperature. 

included. From the slope of parallel straight lines, we 
obtain Bo = 0.5 kG. What is actually implied by this 
plot is that at a given temperature V is a function of 
a only.18 

B. Dependence of V on « 

Having obtained B0, we can display V directly as a 
function of a = J(H+B0). We find then all curves of 
Fig. 6 coalesce into a single curve, as expected from the 
analysis in A. This is shown in Fig. 8 in two steps. The 
curves of Fig. 6 are first plotted against JH to show that 
they are nearly parallel in this representation. The 
addition of JBQ to the abscissa displaces each curve to 
the right by such an amount as to coalesce all curves to 
(f). The degree of this coalescence is indicated by the 
horizontal flags, the scatter being larger in the low 
voltage range where the measurements are more subject 
to noise. There are some second-order systematic trends 
in the scatter which require further investigation. How
ever, the basic dependence of V on / and H can be 
represented in terms of the single parameter a. 

From (18), we can formally derive 

dlnV d i n / 1 dFo q 
= + — . (19) 

da da kT da kT 

18 If V depends only on a, then 

For F(a)=const, i.e., 8V=0, 5a=Q leads to 

da , da dJ dJ 

d(JH) dfd(JH) ^ °d(JH) ' 

or dJ/d(JH) — — 1/BQ which is observed in Fig. 7. 

As long as the exponential term in (18) dominates V, 
and F0 is insensitive to a, we expect to observe the slope 

d InV/da=q/kT (20) 

to be constant at a given temperature. The experimental 
curves show, however, that as a or V increases, the 
slope decreases. At the largest values of V, the slope 
drops until V is almost linear in a.19 Neither the probable 
dependence of FQ on a nor the possibility of the sample 
being at a higher temperature than the bath accounts 
for this behavior. Both of these effects would tend to 
raise V at large values of a, rather than lowering it. 
As for the possible dependence of / on a, some estimates 
can be made using the rate equation (12). For a tubular 
geometry, the back emf V= —LdI/dt=RI arising from 
flux creep is determined by (12) and leads to 

f=2>iradR0H*/c. (21) 

For a wire sample, we estimate 

f~ldR0H/c. (22) 

The approximation 2ira->l (the length of a wire 
sample) is very crude, but / must depend on H because 
of dimensional considerations. The present data, how
ever, do not exhibit this particular field dependence of / . 
Thus, the theory in its present form is inadequate to 
explain the observed behavior of V in a. The assumption 
of a constant average barrier height used in the theory 
can be satisfactory only over a small range of a values, 
a situation typical of the tube experiments. There must 
certainly be a distribution in barrier heights and the 
number of effective barriers will decrease as a increases. 
Such parameters as F0, q, and c will change depending 
on a specific distribution in barrier heights. 

C. Temperature Dependence 

Figure 9 shows how V depends on a at a number of 
different temperatures. The curves were obtained from 
a different 250-cm-long sample of 3Nb-Zr wire. The 
values of B0 obtained at each temperature are shown in 
the figure. B0 increases as T is lowered, as has also been 
observed in tube experiments. As T is lowered, a higher 
a value is required to give the same voltage V. Clearly, 
as the thermal activity is decreased, a greater tilting of 
the barrier structure by a is required to giv^ the same 
flux-creep rate and thus V. 

To test the specific temperature dependence pre-

^19 P. W. Anderson has pointed out that this behavior suggests a 
viscous flow of flux lines rather than creep. At sufficiently large 
values of a, SL point may be reached at which the average barriers 
are nearly overcome by the force. At such a point the exponential 
dependence on a will cease and a new conventional rate equation 
will become effective, the rate being proportional to force, or a. 
This is compared to the difference in magnetic domain motion 
below and above the "coercive force": below; slow, creeplike 
processes occur, while above one has viscous motion of the domain 
walls with velocity proportional to H. 
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dieted by (18), we may rewrite it as 

a = FQ/q-Z(k/q)Hf/V)lT, (18.2) 

and compare this expression with the observed depend
ence of a on T at a constant V. In Fig. 10 is plotted a 
family of data points at various fixed values of V. The 
linear dependence of a on T as implied by (18.2) is 
apparent. Although this test is somewhat obscured be
cause of the uncertainties mentioned in (b), it should be 
noted that (18.2) is essentially the same expression as 
ac(T) from the tube experiments [see (8)], but at much 
higher levels of V. The slope dav/dT^3.5 X106 emu/deg 
for this wire sample, compared to daJdT^ 1.2 X106 

emu/deg for the 3Nb-Zr tube of Fig. 1. Discontinuities 
are present at the helium X transition temperature 7 \ . 
These could be caused by different thermal conditions 
above and below T\. Further investigation is required 
to clarify this point. 

From the above analysis, it is empirically shown 
that in 3Nb-Zr wire samples, V(J,H,T) reduces to 
V(a,T) given by (18), a form expected from the flux-
creep theory. Verification of the theory resulting from 
voltage measurements is essentially of the same quality 
as that from the tube experiments. The voltage measure
ments are, however, more explicit in showing that the 
effect due to a distribution in barrier heights may have to 
be taken into account in the theory. Friedel, DeGennes, 
and Matricon20 have recently made a refined calculation 
on the driving force in flux-creep phenomena, but have 

FIG. 10. a versus T at a constant V. At various fixed values of V, 
the values of a obtained from Fig. 9 are plotted versus T. 
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FIG. 11. V versus JH for a Nb wire. Part of Fig. 1 of Ref. 21 
is converted into the form V per unit length of the sample versus 
JH. V — pJ — (p/pn)Jpn is calculated from their data with pn = 3.6 
/ifi-cm. For curves (e) and (f), the "peak effects," or the dips in 
resistance, observed at # = 5.5 kG are not shown. For all curves, 
the lower ends represent p/pn~ 10~3, while the upper ends repre
sent p/pn=0.07, 0.3, 1.0, and 0.9 for curves (a), (c), (e), and (f), 
respectively. 

not explicitly included the effect of a distribution in 
barrier heights. 

We again expect (18) to hold closely only for the class 
of ideal 5III materials. As an illustration, we cite the 
resistance measurements on Nb wires reported by 
Autler, Rosenblum, and Gooen.21 In Fig. 11, part of 
their data are shown in the form of V versus JH. For 
curves (e) and (f), we ignored the "peak effect" observed 
by these authors at # = 5 . 5 kG. Clearly, there exists no 
positive constant B0 that may help these curves to 
coalesce (see Fig. 8 for comparison). If (18) is fitted, for 
example, to curve (a), experimental curves for low / at 
high fields give a higher resistance than expected. In 
tube experiments, this material would give critical 
current densities at high fields much lower than that 
expected from (6). This is what is observed in the Nb 
tube data shown in Fig. 4(a). 

20 J. Friedel, P. G. DeGennes, and J. Matricon, Appl. Phys. 
Letters 2, 119 (1963). 

21 S. H. Autler, E. S. Rosenblum, and K. H. Gooen, Phys. Rev. 
Letters 9, 489 (1962). We are indebted to Dr. S. H. Autler for the 
detailed experimental data used in our comparison. 
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V. POWER DISSIPATION 

When a superconducting sample is driven into a 
resistive state, power is dissipated in the material. The 
power dissipation per unit volume may be expressed as 

p = VJ/l= (f/l)J exp[_-(Fo-qa)/kT'], (23) 

where / is the length of that part of the sample across 
which the voltage appears. This power may be small, 
but its extreme temperature dependence must be con
sidered. Thermal equilibrium is possible only when a 
proper balance is maintained between the power dissipa
tion and thermal conduction to the bath. Once thermal 
conduction begins to lag power dissipation, the sample 
will soon undergo a catastrophic transition to the normal 
state. In fact, for the sample shown in Fig. 6, this 
catastrophy occurs whenever the total power dissipation 
in the sample reaches 1.1 mW. This critical power level 
depends also on the rate with which a is increased. When 
a is increased faster, the sample goes normal at a lower 
power level. This is no doubt caused by locally excessive 
values of a, as is the case with the flux jumps observed 
in tube experiments. 

Thus, the critical value of a that can be reached in 
voltage measurements, which we designate by ap, is 
limited by the power dissipation in the sample. Struc
tural constants and thermal conductivity of the material 
as well as the cooling condition will enter into the 
determination of ap. In the sample shown in Fig. 9, 
below T\ the critical power level increases by a factor 
of 15 because of the better cooling condition. Even if 
all of these factors are held constant, however, ap also 
depends on the value of J. This is clear from the de
pendence of P on a and / as given in (23). A larger 
value of ap can be attained at a lower level of / , as 
shown in Fig. 8. This also explains why in tube experi
ments flux jumps are more frequent at the low field-high 
current region. In practical applications, this means that 
SIII materials will behave better at the low current-
high field region than at the high current-low field 
region. 

Also note that the average power expression (23) is 
meaningful only if a uniform condition is preserved 
through the entire length of the sample. Otherwise, ap 

will be controlled by the weak spots in the sample. Some 
indications of this effect are evident if we compare the 
two samples shown in Figs. 8 and 9. Both samples 
shown here were taken from the same batch of wire and 
had been treated identically as far as practically possi
ble. The comparison of V(a)'s at 4.2°K indicates that 
the structural conditions are not the same for these 
two samples. Measurements were made on several more 
samples of varying lengths, but all taken from the same 
batch of wire. For any particular sample, however, V(a) 
could not be predicted with certainty on the basis of 
similar measurements made on other samples. This 
lead us to doubt the uniformity even among different 
sections of one sample. We therefore measured the 

voltages appearing across five different sections of a 
250-cm-long wire sample (identical geometry to those 
shown in Figs. 8 and 9), by attaching to the sample six 
equally spaced voltage leads. Via) obtained with this 
sample at 2.0°K is shown by curve (10) of Fig. 9. In this 
measurement, the voltage always appeared across one 
particular section. The voltages across the remaining 
four sections never rose above the noise level ( ^ 1 juV) 
throughout the entire range of V(a) observed. 

The above test indicates that the resistive state as 
observed in the present experiments is controlled by a 
weak spot in the material. Flux creeps rapidly through 
this spot and instabilities leading to a catastrophy grow 
quickly. At present, very little is known about the exact 
nature of the weak spots and we are far from being able 
to control them. Consequently, the performance of a 
long length of wire cannot be predicted with certainty 
from measurements made on a small number of short 
samples, a fact that has been bothering those concerned 
with practical superconducting magnets. I t is also ob
vious that such expressions as p=V/U and P—VJ/l 
containing the length of wire /, must be taken with some 
care. For example, the resistivity as given in Fig. 6 is 
certainly a gross underestimate. 

In the analysis of the previous section, we tacitly 
assumed that the sample temperature T was close to the 
bath temperature TB. Several observations justify this 
assumption. First, if T exceeds TB appreciably, the 
great sensitivity of V on T would cause an increased 
slope in the V(a) curve just before the sample goes 
normal. This is, in fact, observed for curves (8) and (9) 
of Fig. 9, where the high thermal conduction of the 
helium bath below T\ permits much higher power dis
sipation before the normal transition. Over most of the 
curves, however, there is no sudden change in slope, 
indicative that T must be close to TB- Second, in Fig. 8 
are shown curves taken with different values of / and 
hence at different power levels. However, they all 
properly coalesce to a single curve, indicating in each 
case that the sample temperature must be close to the 
4.2°K bath. Figure 9 shows that this also occurs at the 
other temperatures. By relating the power dissipation 
in the equilibrium state to the conditions for thermal 
instabilities, we estimate that the region of a weak spot 
in our 3Nb-Zr sample is rather small. I t could be as 
short in length as 10 - 3 cm. This may preclude any 
attempt to measure directly the local temperature of 
the sample. 

VI. SUMMARY 

In the present investigation, we have attempted to 
unify various phenomena observed in the resistive state 
of hard superconductors. Instrumental to this unifica
tion is the flux-creep theory. This theory assumes 
basically the Abrikosov mixed state, but the phenomena 
associated with transport currents are affected mainly 
by flux pinning. The central feature of the theory is that 
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flux pinned by physical irregularities present in the 
material can creep by thermal activation, the rate of 
creep being determined by the relative strength of 
pinning and magnetic pressure. The dissipative process 
associated with flux creep is intrinsically different from 
ohmic dissipation. Nevertheless, we may conveniently 
talk about electrical resistivity as such by equating 
power dissipation per unit volume to p / 2 , as long as we 
confine this power into the region where the dissipation 
actually takes place. 

Experimentally, the resistive state has been investi
gated by two methods: tube magnetization and resist
ance measurements. In both cases, the observations can 
be unified in terms of the Lorentz force parameter 
a~J(B+B0). In tube magnetization, the internal field 
Hf is measured as a function of the external field H (see 
Fig. 1) and ac is determined from (3). If a is raised be
yond aCy flux creeps so fast that it quickly falls to ac. 
Thus, ac simply represents the value of a at which the 
rate of flux creep (12), or dHf/dt, falls below a certain 
level. For the tube geometries used in our experiments, 
this level corresponds, typically, to p ^ l O - 1 3 12-cm [see 
(7)]. In time, both Hf and a change linearly in \nt, and 
p falls as 1/7. p may fall by several orders of magnitude 
within a few hours, but the decrease in a during this 
period amounts to only a few percent. Therefore, the 
value of ac determined by tube magnetization is not 
seriously affected by this transitory behavior. For the 
same reason, however, tube magnetization also restricts 
our observations to a narrow range of a near ac. Specific 
verifications of the theory resulting from tube experi
ments are: 

(1) At high fields (B^>B0), the observed temperature 
dependence of ac (8) follows from the rate equation (12); 

(2) The logarithmic decay as predicted by the theory 
[see (14)] has been verified. The dependence of decay 

rates on fields and temperature has not been fully 
tested, however; 

(3) Experimental observations of discrete, stochastic 
pulses can be interpreted most naturally in terms of the 
flux-creep theory. 

We tested the theory over a wider range of a variation 
by measuring resistance of SHI samples. Voltages ap
pearing across a sample were obtained as a function of 
externally supplied current / and transverse field H. 
We interpret this voltage as a manifestation of uncom
pensated emf arising from flux creep. WTe again find that 
at a given temperature the voltage so observed is a 
function of only a=J(H+B0), B0 being the same order 
of magnitude as found in tube experiments. V(a,T) 
follows (18), a form expected from the theory. These 
measurements gave rise to another critical value ap, 
which is dictated by power dissipation in some local 
regions of the sample. When a reaches ap, thermal con
duction begins to lag power dissipation and thermal 
instabilities grow quickly from these regions, leading to 
a catastrophic transition to the normal state. 

The summary presented above indicates that the 
flux-creep theory is very effective in unifying various 
phenomena associated with the resistive state of hard 
superconductors. In its present form, however, the 
theory is not adequate to account for: (a) the depend
ence of V on a, (b) the significance of B0 and its tem
perature dependence, and (c) the "peak effect" observed 
in some material near the upper critical field. 
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FIG. 5. Pulses observed in pickup coils of Fig. 1: (a) pulses ob
served in P\ at the shielding region (20 psec/div, 5/tV/div); (b) 
pulses observed in P-i at the circular region (200 /xsec/div, 2 
mV/div). 


